提交记录 12568


用户 题目 状态 得分 用时 内存 语言 代码长度
user1 1002. 测测你的多项式乘法 Accepted 100 115.486 ms 40592 KB C++11 8.20 KB
提交时间 评测时间
2020-04-19 13:57:59 2020-08-01 02:56:25
#include <algorithm>
#include <cstring>

typedef unsigned int uint;
typedef long long unsigned int uint64;

constexpr uint Max_size = 1 << 21 | 5;
constexpr uint g = 3, Mod = 998244353;

inline uint norm_2(const uint x)
{
	return x < Mod * 2 ? x : x - Mod * 2;
}

inline uint norm(const uint x)
{
	return x < Mod ? x : x - Mod;
}

inline uint Mod_mult(const uint x, const uint y) // 32-bit computing
{
	uint64 t = (unsigned long long)x*y;
	unsigned h = (t>>29) * 2309898375ULL >> 32;
	return t-(uint64)h*Mod;
}

struct Z
{
	uint v;
	Z() { }
	Z(const uint _v) : v(_v) { }
};

inline Z operator+(const Z &x1, const Z &x2) { return x1.v + x2.v < Mod ? x1.v + x2.v : x1.v + x2.v - Mod; }
inline Z operator-(const Z &x1, const Z &x2) { return x1.v >= x2.v ? x1.v - x2.v : x1.v + Mod - x2.v; }
inline Z operator*(const Z &x1, const Z &x2) { return Mod_mult(x1.v, x2.v); }
inline Z &operator*=(Z &x1, const Z &x2) { x1.v = Mod_mult(x1.v, x2.v); return x1; }

Z Power(Z Base, int Exp)
{
	Z res = 1;
	for (; Exp; Base *= Base, Exp >>= 1)
		if (Exp & 1)
			res *= Base;
	return res;
}

int size;
std::pair<uint, uint> w_p[Max_size];

inline uint mult_Shoup_2(const uint x, const std::pair<uint, uint> y_p)
{
	uint q = static_cast<uint64>(x) * y_p.second >> 32;
	return x * y_p.first - q * Mod;
}

inline uint mult_Shoup(const uint x, const std::pair<uint, uint> y_p)
{
	return norm(mult_Shoup_2(x, y_p));
}

inline uint mult_Shoup_q(const uint x, const std::pair<uint, uint> y_p)
{
	uint q = static_cast<uint64>(x) * y_p.second >> 32;
	return q + (x * y_p.first - q * Mod >= Mod);
}

void init_w(const int n)
{
	for (size = 2; size < n; size <<= 1)
		;
	uint pr = Power(g, (Mod - 1) / size).v;
	std::pair<uint, uint> pr_p = {pr, (static_cast<uint64>(pr) << 32) / Mod};
	uint pr_r = (static_cast<uint64>(pr) << 32) % Mod;
	size >>= 1;
	w_p[size] = {1, (1ULL << 32) / Mod};
#define compute(r_p, b_p)\
	do\
	{\
		uint x = b_p.first;\
		uint64 p = static_cast<uint64>(x) * pr_p.second;\
		uint q = p >> 32;\
		r_p = {norm(x * pr_p.first - q * Mod), static_cast<uint>(p) + mult_Shoup_q(pr_r, b_p)};\
	} while (0)
	if (size <= 4)
	{
		for (int i = 1; i != size; ++i)
			compute(w_p[size + i], w_p[size + i - 1]);
	}
	else
	{
		for (int i = 1; i != 8; ++i)
			compute(w_p[size + i], w_p[size + i - 1]);
		pr_p = w_p[size + 4], pr_r = -pr_p.second * Mod;
		for (int i = 8; i != size; i += 4)
		{
			compute(w_p[size + i + 0], w_p[size + i - 4]);
			compute(w_p[size + i + 1], w_p[size + i - 3]);
			compute(w_p[size + i + 2], w_p[size + i - 2]);
			compute(w_p[size + i + 3], w_p[size + i - 1]);
		}
	}
	for (int i = size - 1; i; --i)
		w_p[i] = w_p[i * 2];
	size <<= 1;
}

//void DFT_fr_2(Z _A[], const int L)
//{
//	uint *A = reinterpret_cast<uint *>(_A);
//	for (int d = L >> 1; d; d >>= 1)
//		for (int i = 0; i != L; i += d << 1)
//			for (int j = 0; j != d; ++j)
//			{
//				uint x = norm_2(A[i + j] + A[i + d + j]);
//				uint y = mult_Shoup_2(A[i + j] + Mod * 2 - A[i + d + j], w_p[d + j]);
//				A[i + j] = x, A[i + d + j] = y;
//			}
//}
void DFT_fr_2(Z _A[], const int L)
{
	if (L == 1)
		return;
	uint *A = reinterpret_cast<uint *>(_A);
//	auto butterfly1 = [](uint &a, uint &b)
//	{
//		uint x = norm_2(a + b), y = norm_2(a + Mod * 2 - b);
//		a = x, b = y;
//	};
#define butterfly1(a, b)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a + _b), y = norm_2(_a + Mod * 2 - _b);\
		a = x, b = y;\
	} while (0)
	if (L == 2)
	{
		butterfly1(A[0], A[1]);
		return;
	}
//	auto butterfly = [](uint &a, uint &b, const std::pair<uint, uint> _w_p)
//	{
//		uint x = norm_2(a + b), y = mult_Shoup_2(a + Mod * 2 - b, _w_p);
//		a = x, b = y;
//	};
#define butterfly(a, b, _w_p)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a + _b), y = mult_Shoup_2(_a + Mod * 2 - _b, _w_p);\
		a = x, b = y;\
	} while (0)
	if (L == 4)
	{
		butterfly1(A[0], A[2]);
		butterfly(A[1], A[3], w_p[3]);
		butterfly1(A[0], A[1]);
		butterfly1(A[2], A[3]);
		return;
	}
	for (int d = L >> 1; d != 4; d >>= 1)
		for (int i = 0; i != L; i += d << 1)
			for (int j = 0; j != d; j += 4)
			{
				butterfly(A[i + j + 0], A[i + d + j + 0], w_p[d + j + 0]);
				butterfly(A[i + j + 1], A[i + d + j + 1], w_p[d + j + 1]);
				butterfly(A[i + j + 2], A[i + d + j + 2], w_p[d + j + 2]);
				butterfly(A[i + j + 3], A[i + d + j + 3], w_p[d + j + 3]);
			}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 4]);
		butterfly(A[i + 1], A[i + 5], w_p[5]);
		butterfly(A[i + 2], A[i + 6], w_p[6]);
		butterfly(A[i + 3], A[i + 7], w_p[7]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 2]);
		butterfly(A[i + 1], A[i + 3], w_p[3]);
		butterfly1(A[i + 4], A[i + 6]);
		butterfly(A[i + 5], A[i + 7], w_p[3]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 1]);
		butterfly1(A[i + 2], A[i + 3]);
		butterfly1(A[i + 4], A[i + 5]);
		butterfly1(A[i + 6], A[i + 7]);
	}
#undef butterfly1
#undef butterfly
}

void DFT_fr(Z _A[], const int L)
{
	DFT_fr_2(_A, L);
	for (int i = 0; i != L; ++i)
		_A[i] = norm(_A[i].v);
}

//void IDFT_fr(Z _A[], const int L)
//{
//	uint *A = reinterpret_cast<uint *>(_A);
//	for (int d = 1; d != L; d <<= 1)
//		for (int i = 0; i != L; i += d << 1)
//			for (int j = 0; j != d; ++j)
//			{
//				uint x = norm_2(A[i + j]);
//				uint t = mult_Shoup_2(A[i + d + j], w_p[d + j]);
//				A[i + j] = x + t, A[i + d + j] = x + Mod * 2 - t;
//			}
//	std::reverse(A + 1, A + L);
//	if (L == 2)
//		A[0] = norm_2(A[0]), A[1] = norm_2(A[1]);
//	int k = __builtin_ctz(L);
//	for (int i = 0; i != L; ++i)
//	{
//		uint64 m = -A[i] & (L - 1);
//		A[i] = norm((A[i] + m * Mod) >> k);
//	}
//}
void IDFT_fr(Z _A[], const int L)
{
	if (L == 1)
		return;
	uint *A = reinterpret_cast<uint *>(_A);
//	auto butterfly1 = [](uint &a, uint &b)
//	{
//		uint x = norm_2(a), t = norm_2(b);
//		a = x + t, b = x + Mod * 2 - t;
//	};
#define butterfly1(a, b)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a), t = norm_2(_b);\
		a = x + t, b = x + Mod * 2 - t;\
	} while (0)
	if (L == 2)
	{
		butterfly1(A[0], A[1]);
		A[0] = norm(norm_2(A[0])), A[0] = A[0] & 1 ? A[0] + Mod : A[0], A[0] /= 2;
		A[1] = norm(norm_2(A[1])), A[1] = A[1] & 1 ? A[1] + Mod : A[1], A[1] /= 2;
		return;
	}
//	auto butterfly = [](uint &a, uint &b, const std::pair<uint, uint> _w_p)
//	{
//		uint x = norm_2(a), t = mult_Shoup_2(b, _w_p);
//		a = x + t, b = x + Mod * 2 - t;
//	};
#define butterfly(a, b, _w_p)\
	do\
	{\
		uint _a = a, _b = b;\
		uint x = norm_2(_a), t = mult_Shoup_2(_b, _w_p);\
		a = x + t, b = x + Mod * 2 - t;\
	} while (0)
	if (L == 4)
	{
		butterfly1(A[0], A[1]);
		butterfly1(A[2], A[3]);
		butterfly1(A[0], A[2]);
		butterfly(A[1], A[3], w_p[3]);
		std::swap(A[1], A[3]);
		for (int i = 0; i != L; ++i)
		{
			uint64 m = -A[i] & 3;
			A[i] = norm((A[i] + m * Mod) >> 2);
		}
		return;
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 1]);
		butterfly1(A[i + 2], A[i + 3]);
		butterfly1(A[i + 4], A[i + 5]);
		butterfly1(A[i + 6], A[i + 7]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 2]);
		butterfly(A[i + 1], A[i + 3], w_p[3]);
		butterfly1(A[i + 4], A[i + 6]);
		butterfly(A[i + 5], A[i + 7], w_p[3]);
	}
	for (int i = 0; i != L; i += 8)
	{
		butterfly1(A[i + 0], A[i + 4]);
		butterfly(A[i + 1], A[i + 5], w_p[5]);
		butterfly(A[i + 2], A[i + 6], w_p[6]);
		butterfly(A[i + 3], A[i + 7], w_p[7]);
	}
	for (int d = 8; d != L; d <<= 1)
		for (int i = 0; i != L; i += d << 1)
			for (int j = 0; j != d; j += 4)
			{
				butterfly(A[i + j + 0], A[i + d + j + 0], w_p[d + j + 0]);
				butterfly(A[i + j + 1], A[i + d + j + 1], w_p[d + j + 1]);
				butterfly(A[i + j + 2], A[i + d + j + 2], w_p[d + j + 2]);
				butterfly(A[i + j + 3], A[i + d + j + 3], w_p[d + j + 3]);
			}
#undef butterfly1
#undef butterfly
	std::reverse(A + 1, A + L);
	int k = __builtin_ctz(L);
	for (int i = 0; i != L; ++i)
	{
		uint64 m = -A[i] & (L - 1);
		A[i] = norm((A[i] + m * Mod) >> k);
	}
}

Z A[Max_size], B[Max_size];

void poly_multiply(uint _A[], int N, uint _B[], int M, uint _C[])
{
	memcpy(reinterpret_cast<uint *>(A), _A, (N + 1) * sizeof(uint));
	memcpy(reinterpret_cast<uint *>(B), _B, (M + 1) * sizeof(uint));

	int L;
	for (L = 2; L <= N + M; L <<= 1)
		;
	init_w(L);

	DFT_fr_2(A, L), DFT_fr_2(B, L);
	for (int i = 0; i != L; ++i)
		A[i] *= B[i];
	IDFT_fr(A, L);

	memcpy(_C, reinterpret_cast<uint *>(A), (N + M + 1) * sizeof(uint));
}

CompilationN/AN/ACompile OKScore: N/A

Testcase #1115.486 ms39 MB + 656 KBAcceptedScore: 100


Judge Duck Online | 评测鸭在线
Server Time: 2024-11-23 05:46:39 | Loaded in 1 ms | Server Status
个人娱乐项目,仅供学习交流使用 | 捐赠