提交记录 17637


用户 题目 状态 得分 用时 内存 语言 代码长度
jscblack 1002i. 【模板题】多项式乘法 Accepted 100 48.716 ms 9588 KB C++ 8.87 KB
提交时间 评测时间
2022-04-12 19:12:29 2022-04-12 19:12:34
#include <bits/stdc++.h>
using namespace std;
#define clog(x) clog << (#x) << " is " << (x) << '\n';
// #include "include/izlyforever.hpp"
const int M = 998244353;
typedef long long ll;
namespace NFTS
{
    int g = 3;
    vector<int> rev, roots{0, 1};
    int powMod(int x, int n)
    {
        int r(1);
        while (n)
        {
            if (n & 1)
                r = 1LL * r * x % M;
            n >>= 1;
            x = 1LL * x * x % M;
        }
        return r;
    }
    void dft(vector<int> &a)
    {
        int n = a.size();
        if ((int)rev.size() != n)
        {
            int k = __builtin_ctz(n) - 1;
            rev.resize(n);
            for (int i = 0; i < n; ++i)
            {
                rev[i] = rev[i >> 1] >> 1 | (i & 1) << k;
            }
        }
        if ((int)roots.size() < n)
        {
            int k = __builtin_ctz(roots.size());
            roots.resize(n);
            while ((1 << k) < n)
            {
                int e = powMod(g, (M - 1) >> (k + 1));
                for (int i = 1 << (k - 1); i < (1 << k); ++i)
                {
                    roots[2 * i] = roots[i];
                    roots[2 * i + 1] = 1LL * roots[i] * e % M;
                }
                ++k;
            }
        }
        for (int i = 0; i < n; ++i)
            if (rev[i] < i)
            {
                swap(a[i], a[rev[i]]);
            }
        for (int k = 1; k < n; k *= 2)
        {
            for (int i = 0; i < n; i += 2 * k)
            {
                for (int j = 0; j < k; ++j)
                {
                    int u = a[i + j];
                    int v = 1LL * a[i + j + k] * roots[k + j] % M;
                    int x = u + v, y = u - v;
                    if (x >= M)
                        x -= M;
                    if (y < 0)
                        y += M;
                    a[i + j] = x;
                    a[i + j + k] = y;
                }
            }
        }
    }
    void idft(vector<int> &a)
    {
        int n = a.size();
        reverse(a.begin() + 1, a.end());
        dft(a);
        int inv = powMod(n, M - 2);
        for (int i = 0; i < n; ++i)
        {
            a[i] = 1LL * a[i] * inv % M;
        }
    }
} // namespace NFTS

class PolyS
{
    void Reverse()
    {
        reverse(a.begin(), a.end());
    }

public:
#define inv2 (M + 1) / 2
    // static inline const int inv2 = (M + 1) / 2;
    vector<int> a;
    PolyS() {}
    PolyS(int x)
    {
        if (x)
            a = {x};
    }
    PolyS(const vector<int> _a) : a(_a) {}
    int size() const { return a.size(); }
    int &operator[](int id) { return a[id]; }

    int at(int id) const
    {
        if (id < 0 || id >= (int)a.size())
            return 0;
        return a[id];
    }

    PolyS operator-() const
    {
        auto A = *this;
        for (auto &x : A.a)
            x = (x == 0 ? 0 : M - x);
        return A;
    }
    PolyS mulXn(int n) const
    {
        auto b = a;
        b.insert(b.begin(), n, 0);
        return PolyS(b);
    }
    PolyS modXn(int n) const
    {
        if (n > size())
            return *this;
        return PolyS({a.begin(), a.begin() + n});
    }
    PolyS divXn(int n) const
    {
        if (size() <= n)
            return PolyS();
        return PolyS({a.begin() + n, a.end()});
    }
    PolyS &operator+=(const PolyS &rhs)
    {
        if (size() < rhs.size())
            a.resize(rhs.size());
        for (int i = 0; i < rhs.size(); ++i)
        {
            if ((a[i] += rhs.a[i]) >= M)
                a[i] -= M;
        }
        return *this;
    }
    PolyS &operator-=(const PolyS &rhs)
    {
        if (size() < rhs.size())
            a.resize(rhs.size());
        for (int i = 0; i < rhs.size(); ++i)
        {
            if ((a[i] -= rhs.a[i]) < 0)
                a[i] += M;
        }
        return *this;
    }
    PolyS &operator*=(PolyS rhs)
    {
        int n = size(), m = rhs.size(), tot = max(1, n + m - 1);
        int sz = 1 << __lg(tot * 2 - 1);
        a.resize(sz);
        rhs.a.resize(sz);
        NFTS::dft(a);
        NFTS::dft(rhs.a);
        for (int i = 0; i < sz; ++i)
        {
            a[i] = 1LL * a[i] * rhs.a[i] % M;
        }
        NFTS::idft(a);
        return *this;
    }
    PolyS &operator/=(PolyS rhs)
    {
        int n = size(), m = rhs.size();
        if (n < m)
            return (*this) = PolyS();
        Reverse();
        rhs.Reverse();
        (*this) *= rhs.inv(n - m + 1);
        a.resize(n - m + 1);
        Reverse();
        return *this;
    }
    PolyS &operator%=(PolyS rhs)
    {
        return (*this) -= (*this) / rhs * rhs;
    }
    PolyS operator+(const PolyS &rhs) const
    {
        return PolyS(*this) += rhs;
    }
    PolyS operator-(const PolyS &rhs) const
    {
        return PolyS(*this) -= rhs;
    }
    PolyS operator*(PolyS rhs) const
    {
        return PolyS(*this) *= rhs;
    }
    PolyS operator/(PolyS rhs) const
    {
        return PolyS(*this) /= rhs;
    }
    PolyS operator%(PolyS rhs) const
    {
        return PolyS(*this) %= rhs;
    }
    PolyS powModPoly(int n, PolyS p)
    {
        PolyS r(1), x(*this);
        while (n)
        {
            if (n & 1)
                (r *= x) %= p;
            n >>= 1;
            (x *= x) %= p;
        }
        return r;
    }
    int inner(const PolyS &rhs)
    {
        int r = 0, n = min(size(), rhs.size());
        for (int i = 0; i < n; ++i)
        {
            r = (r + 1LL * a[i] * rhs.a[i]) % M;
        }
        return r;
    }
    PolyS derivation() const
    {
        if (a.empty())
            return PolyS();
        int n = size();
        vector<int> r(n - 1);
        for (int i = 1; i < n; ++i)
            r[i - 1] = 1LL * a[i] * i % M;
        return PolyS(r);
    }
    PolyS integral() const
    {
        if (a.empty())
            return PolyS();
        int n = size();
        vector<int> r(n + 1), inv(n + 1, 1);
        for (int i = 2; i <= n; ++i)
            inv[i] = 1LL * (M - M / i) * inv[M % i] % M;
        for (int i = 0; i < n; ++i)
            r[i + 1] = 1LL * a[i] * inv[i + 1] % M;
        return PolyS(r);
    }
    PolyS inv(int n) const
    {
        PolyS x(NFTS::powMod(a[0], M - 2));
        int k = 1;
        while (k < n)
        {
            k *= 2;
            x *= (PolyS(2) - modXn(k) * x).modXn(k);
        }
        return x.modXn(n);
    }
    PolyS log(int n) const
    {
        return (derivation() * inv(n)).integral().modXn(n);
    }
    PolyS exp(int n) const
    {
        PolyS x(1);
        int k = 1;
        while (k < n)
        {
            k *= 2;
            x = (x * (PolyS(1) - x.log(k) + modXn(k))).modXn(k);
        }
        return x.modXn(n);
    }
    PolyS sqrt(int n) const
    {
        PolyS x(1);
        int k = 1;
        while (k < n)
        {
            k *= 2;
            x += modXn(k) * x.inv(k);
            x = x.modXn(k) * inv2;
        }
        return x.modXn(n);
    }

    PolyS mulT(PolyS rhs) const
    {
        if (rhs.size() == 0)
            return PolyS();
        int n = rhs.size();
        reverse(rhs.a.begin(), rhs.a.end());
        return ((*this) * rhs).divXn(n - 1);
    }
    int eval(int x)
    {
        int r = 0, t = 1;
        for (int i = 0, n = size(); i < n; ++i)
        {
            r = (r + 1LL * a[i] * t) % M;
            t = 1LL * t * x % M;
        }
        return r;
    }
    vector<int> evals(vector<int> x) const
    {
        if (size() == 0)
            return vector<int>(x.size());
        int n = x.size();
        vector<int> ans(n);
        vector<PolyS> g(4 * n);
        function<void(int, int, int)> build = [&](int l, int r, int p)
        {
            if (r - l == 1)
            {
                // g[p] = vector<int>{1, x[i] ? M - x[l] : 0};
                g[p] = PolyS({1, x[l] ? M - x[l] : 0});
            }
            else
            {
                int m = (l + r) / 2;
                build(l, m, 2 * p);
                build(m, r, 2 * p + 1);
                g[p] = g[2 * p] * g[2 * p + 1];
            }
        };
        build(0, n, 1); //
        function<void(int, int, int, const PolyS &)> solve = [&](int l, int r, int p, const PolyS &f)
        {
            if (r - l == 1)
            {
                ans[l] = f.at(0);
            }
            else
            {
                int m = (l + r) / 2;
                solve(l, m, 2 * p, f.mulT(g[2 * p + 1]).modXn(m - l));
                solve(m, r, 2 * p + 1, f.mulT(g[2 * p]).modXn(r - m));
            }
        };
        solve(0, n, 1, mulT(g[1].inv(size())).modXn(n));
        return ans;
    }
#undef inv2
};

int main()
{
    ios::sync_with_stdio(0);
    int n, m;
    cin >> n >> m;
    vector<int> tmp1;
    vector<int> tmp2;
    int x;

    for (int i = 0; i <= n; ++i)
    {
        cin >> x;
        tmp1.push_back(x);
    }
    for (int i = 0; i <= m; ++i)
    {
        cin >> x;
        tmp2.push_back(x);
    }
    PolyS A(tmp1);
    PolyS B(tmp2);
    A = A * B;
    for (int i = 0; i <= n+m; ++i)
        cout << A.at(i) << ' ';
}

CompilationN/AN/ACompile OKScore: N/A

Subtask #1 Testcase #142.79 us60 KBAcceptedScore: 0

Subtask #1 Testcase #248.546 ms9 MB + 292 KBAcceptedScore: 0

Subtask #1 Testcase #322.432 ms4 MB + 508 KBAcceptedScore: 100

Subtask #1 Testcase #422.357 ms3 MB + 616 KBAcceptedScore: 0

Subtask #1 Testcase #545.87 us60 KBAcceptedScore: 0

Subtask #1 Testcase #643.94 us60 KBAcceptedScore: 0

Subtask #1 Testcase #744.28 us60 KBAcceptedScore: 0

Subtask #1 Testcase #844.032 ms8 MB + 520 KBAcceptedScore: 0

Subtask #1 Testcase #943.99 ms8 MB + 388 KBAcceptedScore: 0

Subtask #1 Testcase #1039.5 ms7 MB + 736 KBAcceptedScore: 0

Subtask #1 Testcase #1148.716 ms9 MB + 372 KBAcceptedScore: 0

Subtask #1 Testcase #1245.461 ms8 MB + 252 KBAcceptedScore: 0

Subtask #1 Testcase #1342.95 us60 KBAcceptedScore: 0


Judge Duck Online | 评测鸭在线
Server Time: 2025-01-19 02:33:09 | Loaded in 1 ms | Server Status
个人娱乐项目,仅供学习交流使用 | 捐赠