提交记录 16670
提交时间 |
评测时间 |
2021-10-07 09:26:20 |
2021-10-07 09:26:22 |
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
using namespace std;
//const int M = 20000;
const int M = 2500000;
const double PI = acos(-1);
int n;
string num1, num2;
//实现虚数类,成员变量为实部和虚部,也需要实现多种运算
class Complex{
public:
double x;
double y;
Complex(double _x = 0, double _y = 0){
x = _x;
y = _y;
}
Complex operator*(Complex num){
return Complex(x * num.x - y * num.y, x * num.y + y * num.x);
}
Complex operator+(Complex num){
return Complex(x + num.x, y + num.y);
}
Complex operator-(Complex num){
return Complex(x - num.x, y - num.y);
}
};
void FFT(Complex* a, int len, int flag){
int* pos = new int[len];
for(int i = 0; i < len; i++){
//num为系数a_i要去的位置,tmp记录当前i剩余的位数对应的值,cnt记录循环执行次数(共执行log2(len)次)
int num = 0;
int tmp = i;
int cnt = 1;
while(cnt < len){
num *= 2;
num += tmp % 2;
tmp /= 2;
cnt *= 2;
}
pos[i] = num;
}
//更新系数的位置
for(int i = 0; i < len; i++){
if(i < pos[i])swap(a[i], a[pos[i]]);
}
//i为待合并区间的长度
for(int i = 1; i < len; i *= 2){
//w_2i为该迭代中的2i次单位根
Complex w_2i(cos(PI / i), flag * sin(PI / i));
//j为已经合并了的长度
for(int j = 0; j < len; j += i * 2){
Complex w(1, 0);
//k为两个待合并区间的第一个区间的系数下标
for(int k = j; k < j + i; k++){
Complex num1 = a[k];
Complex num2 = w * a[k + i];
a[k] = num1 + num2;
a[k + i] = num1 - num2;
w = w * w_2i;
}
}
}
//IFFT需要对系数除以长度
if(flag == -1){
for(int i = 0; i < len; i++)a[i].x /= len;
}
}
void get_product(string num1, string num2){
//a、b数组存储倒序放置的两个数字
Complex a[M], b[M];
//int len1 = strlen(num1);
//int len2 = strlen(num2);
int len1 = num1.length();
int len2 = num2.length();
int len = max(len1, len2);
//若两个数字的位数不是2的次幂,需要在高位补0使得长度为2的次幂;arr_len为补0后的长度
int arr_len = 1;
while(arr_len < len1 + len2 - 1)arr_len *= 2;
for(int i = 0; i < arr_len; i++){
if(i < len1)a[i].x = double(num1[len1 - 1 - i] - '0');
else a[i].x = 0;
}
for(int i = 0; i < arr_len; i++){
if(i < len2)b[i].x = double(num2[len2 - 1 - i] - '0');
else b[i].x = 0;
}
//对a、b数组进行FFT操作
FFT(a, arr_len, 1);
FFT(b, arr_len, 1);
for(int i = 0; i < arr_len; i++)a[i] = a[i] * b[i];
//对a数组进行IFFT操作
FFT(a, arr_len, -1);
//处理最终得到的系数
int* ans = new int[len * 2];
for(int i = 0; i < len1 + len2 - 1; i++){
ans[i] = (int)(a[i].x + 0.5);
}
//处理进位
for(int i = 0; i < len1 + len2 - 1; i++){
if(ans[i] >= 10){
ans[i + 1] += ans[i] / 10;
ans[i] %= 10;
}
}
//将最终结果打印出来
string product = "";
bool flag = false;
for(int i = len1 + len2 - 1; i >= 0; i--){
if(!flag && ans[i]){
flag = true;
}
if(flag)product += char(ans[i] + '0');
}
if(!flag)cout << "0" << endl;
else cout << product << endl;
}
int main(){
//cin >> n;
//while(n--){
cin >> num1 >> num2;
get_product(num1, num2);
//}
return 0;
}
Compilation | N/A | N/A | Compile OK | Score: N/A | 显示更多 |
Testcase #1 | 515.989 ms | 119 MB + 820 KB | Accepted | Score: 100 | 显示更多 |
Judge Duck Online | 评测鸭在线
Server Time: 2025-01-19 02:25:58 | Loaded in 0 ms | Server Status
个人娱乐项目,仅供学习交流使用 | 捐赠