#include <stdio.h>
#include <string.h>
#include <math.h>
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define PI 3.14159265358979323846
template <class T>
inline void swap(T &a, T &b) {
T t = a;
a = b, b = t;
}
namespace IO {
const int BUF_SIZE = 1 << 15;
char in_buf[BUF_SIZE], out_buf[BUF_SIZE];
char *p_in_buf = in_buf + BUF_SIZE;
char *p_out_buf = out_buf;
inline char get_char() {
if (p_in_buf == in_buf + BUF_SIZE) {
fread(in_buf, 1, BUF_SIZE, stdin), p_in_buf = in_buf;
}
return *(p_in_buf++);
}
inline void put_char(char x) {
if (p_out_buf == out_buf + BUF_SIZE) {
fwrite(out_buf, 1, BUF_SIZE, stdout), p_out_buf = out_buf;
}
*(p_out_buf++) = x;
}
inline void flush() {
if (p_out_buf != out_buf) {
fwrite(out_buf, 1, p_out_buf - out_buf, stdout);
p_out_buf = out_buf;
}
}
}
#define getchar() IO::get_char()
#define putchar(x) IO::put_char(x)
inline int getint() {
int x = 0;
char c = getchar();
while (c <= 32) c = getchar();
while (c > 32) x = x * 10 + c - 48, c = getchar();
return x;
}
inline int getint(char &c) {
int x = 0;
c = getchar();
while (c <= 32) c = getchar();
while (c > 32) x = x * 10 + c - 48, c = getchar();
return x;
}
template <class T>
inline void _putint(T x) {
return x ? _putint(x / 10), putchar(48 + x % 10), void() : void();
}
template <class T>
inline void putint(T x) {
return x == 0 ? putchar('0'), void() : _putint(x), void();
}
inline void getline(char *s) {
char c = getchar();
while (c == '\n') c = getchar();
while (c != '\n') *(s++) = c, c = getchar();
*s = 0;
}
// ==== header ====
#define float double
struct Complex {
float x, y;
Complex conj() {
return (Complex){x, -y};
}
Complex conj2() {
return (Complex){-x, y};
}
};
inline Complex operator + (const Complex &a, const Complex &b) {
return (Complex){a.x + b.x, a.y + b.y};
}
inline Complex operator - (const Complex &a, const Complex &b) {
return (Complex){a.x - b.x, a.y - b.y};
}
inline Complex operator * (const Complex &a, const Complex &b) {
return (Complex){a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x};
}
Complex A[(1 << 21) + 1], B[(1 << 21) + 1];
int bitrev[1 << 11];
void bitrev_init() {
for (int i = 0; i < 1 << 11; i++) {
int t = 0;
for (int j = 0; j < 11; j++) {
t |= ((i >> j) & 1) << (10 - j);
}
bitrev[i] = t;
}
}
inline int get_bitrev(int x, int len) {
return (bitrev[x >> 11] | (bitrev[x & ((1 << 11) - 1)] << 11)) >> (22 - len);
}
void FFT(Complex *a, int lg_n, bool rev) {
int n = 1 << lg_n;
for (int i = lg_n - 1; i >= 0; i--) {
int S = 1 << i;
Complex w1 = (Complex){cos(PI / S), -sin(PI / S) * (rev ? -1 : 1)};
for (int j = 0; j < n; j += 2 * S) {
Complex w = (Complex){1.0, 0.0};
Complex *A = a + j;
for (int k = 0; k < S; k++) {
Complex t = A[k + S];
A[k + S] = (A[k] - t) * w;
A[k] = A[k] + t;
w = w * w1;
}
}
}
for (int i = 0; i < n; i++) {
int t = get_bitrev(i, lg_n);
if (i < t) {
Complex tmp = a[i];
a[i] = a[t], a[t] = tmp;
}
}
}
void FFT(Complex *a, Complex *b, int lg_n, bool rev) {
int n = 1 << lg_n;
for (int i = lg_n - 1; i >= 0; i--) {
int S = 1 << i;
Complex w1 = (Complex){cos(PI / S), -sin(PI / S) * (rev ? -1 : 1)};
for (int j = 0; j < n; j += 2 * S) {
Complex w = (Complex){1.0, 0.0};
Complex *A = a + j, *B = b + j;
for (int k = 0; k < S; k++) {
Complex ta = A[k + S], tb = B[k + S];
A[k + S] = (A[k] - ta) * w;
B[k + S] = (B[k] - tb) * w;
A[k] = A[k] + ta;
B[k] = B[k] + tb;
w = w * w1;
}
}
}
for (int i = 0; i < n; i++) {
int t = get_bitrev(i, lg_n);
if (i < t) {
Complex tmp = a[i];
a[i] = a[t], a[t] = tmp;
tmp = b[i];
b[i] = b[t], b[t] = tmp;
}
}
}
char in_s[(1 << 20) + 10];
int main() {
int n, m;
n = m = 1000000 - 1;
int lg_n = 3;
while (1 << lg_n < n + 1 || 1 << lg_n < m + 1) ++lg_n;
bitrev_init();
int N = 1 << lg_n;
int N2 = N >> 1;
getline(in_s);
for (int i = 0; i <= n; i++) {
// *0.5 is to avoid *2 in later caclulation
(i & 1 ? A[i >> 1].y : A[i >> 1].x) = (in_s[n - i] - 48) * 0.5;
}
getline(in_s);
for (int i = 0; i <= m; i++) {
(i & 1 ? B[i >> 1].y : B[i >> 1].x) = (in_s[m - i] - 48) * 0.5;
}
FFT(A, B, lg_n, false);
A[N] = A[0];
B[N] = B[0];
const Complex w = (Complex){cos(2 * PI / N), sin(2 * PI / N)};
Complex w_product = (Complex){1, 0};
for (int i = 0; i <= N2; i++) {
Complex a1 = A[i] + A[N - i];
Complex a2 = A[i] - A[N - i];
Complex b1 = B[i] + B[N - i];
Complex b2 = B[i] - B[N - i];
Complex a = (Complex){a1.x, a2.y};
Complex b = (Complex){a2.x, a1.y};
Complex c = (Complex){b1.x, b2.y};
Complex d = (Complex){b2.x, b1.y};
// a * c - b * d * delta(x - 1) + a * d + b * c
// @Signal Processing
A[i] = a * c + a * d + b * c - b * d * w_product.conj();
A[N - i] = (a * c).conj() + a.conj() * d.conj2() + b.conj2() * c.conj() - b.conj2() * d.conj2() * w_product;
w_product = w_product * w;
}
FFT(A, lg_n, true);
float inv_n = 1.0 / N;
int ans[2000005];
for (int i = 0; i <= n + m; i++) {
ans[i] = (int)((i & 1 ? A[i >> 1].y : A[i >> 1].x) * inv_n + 0.5);
}
ans[n + m + 1] = 0;
for (int i = 0; i <= n + m; i++) {
ans[i + 1] += ans[i] / 10;
ans[i] = ans[i] % 10;
}
int i = n + m + 1;
while (!ans[i]) i--;
while (i >= 0) putchar(ans[i] + 48), i--;
IO::flush();
}
Compilation | N/A | N/A | Compile OK | Score: N/A | 显示更多 |
Testcase #1 | 207.078 ms | 42 MB + 596 KB | Accepted | Score: 100 | 显示更多 |